Tencent, WeChat Pay
Abstract:Palmprint recognition is a secure and privacy-friendly method of biometric identification. One of the major challenges to improve palmprint recognition accuracy is the scarcity of palmprint data. Recently, a popular line of research revolves around the synthesis of virtual palmprints for large-scale pre-training purposes. In this paper, we propose a novel synthesis method named Canny2Palm that extracts palm textures with Canny edge detector and uses them to condition a Pix2Pix network for realistic palmprint generation. By re-assembling palmprint textures from different identities, we are able to create new identities by seeding the generator with new assemblies. Canny2Palm not only synthesizes realistic data following the distribution of real palmprints but also enables controllable diversity to generate large-scale new identities. On open-set palmprint recognition benchmarks, models pre-trained with Canny2Palm synthetic data outperform the state-of-the-art with up to 7.2% higher identification accuracy. Moreover, the performance of models pre-trained with Canny2Palm continues to improve given 10,000 synthetic IDs while those with existing methods already saturate, demonstrating the potential of our method for large-scale pre-training.
Abstract:Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models. However, the massive model scale poses significant challenges for the underlying software and hardware systems. In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs. The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware. To select model configurations suitable for Ascend NPUs without repeatedly running the expensive experiments, we leverage simulation to compare the trade-off of various model hyperparameters. This study led to Pangu Ultra MoE, a sparse LLM with 718 billion parameters, and we conducted experiments on the model to verify the simulation results. On the system side, we dig into Expert Parallelism to optimize the communication between NPU devices to reduce the synchronization overhead. We also optimize the memory efficiency within the devices to further reduce the parameter and activation management overhead. In the end, we achieve an MFU of 30.0% when training Pangu Ultra MoE, with performance comparable to that of DeepSeek R1, on 6K Ascend NPUs, and demonstrate that the Ascend system is capable of harnessing all the training stages of the state-of-the-art language models. Extensive experiments indicate that our recipe can lead to efficient training of large-scale sparse language models with MoE. We also study the behaviors of such models for future reference.
Abstract:Multi-Hop Question Answering (MHQA) tasks permeate real-world applications, posing challenges in orchestrating multi-step reasoning across diverse knowledge domains. While existing approaches have been improved with iterative retrieval, they still struggle to identify and organize dynamic knowledge. To address this, we propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval. DualRAG operates through two tightly coupled processes: Reasoning-augmented Querying (RaQ) and progressive Knowledge Aggregation (pKA). They work in concert: as RaQ navigates the reasoning path and generates targeted queries, pKA ensures that newly acquired knowledge is systematically integrated to support coherent reasoning. This creates a virtuous cycle of knowledge enrichment and reasoning refinement. Through targeted fine-tuning, DualRAG preserves its sophisticated reasoning and retrieval capabilities even in smaller-scale models, demonstrating its versatility and core advantages across different scales. Extensive experiments demonstrate that this dual-process approach substantially improves answer accuracy and coherence, approaching, and in some cases surpassing, the performance achieved with oracle knowledge access. These results establish DualRAG as a robust and efficient solution for complex multi-hop reasoning tasks.
Abstract:Transformer-based Large Language Models (LLMs) have significantly advanced AI capabilities but pose considerable challenges for deployment on edge devices due to high computational demands, memory bandwidth constraints, and energy consumption. This paper addresses these challenges by presenting an efficient framework for deploying the Qwen2.5-0.5B model on the Xilinx Kria KV260 edge platform, a heterogeneous system integrating an ARM Cortex-A53 CPU with reconfigurable FPGA logic. Leveraging Activation-aware Weight Quantization (AWQ) with FPGA-accelerated execution pipelines, the proposed approach enhances both model compression rate and system throughput. Additionally, we propose a hybrid execution strategy that intelligently offloads compute-intensive operations to the FPGA while utilizing the CPU for lighter tasks, effectively balancing the computational workload and maximizing overall performance. Our framework achieves a model compression rate of 55.08% compared to the original model and produces output at a rate of 5.1 tokens per second, outperforming the baseline performance of 2.8 tokens per second.
Abstract:Underwater observation systems typically integrate optical cameras and imaging sonar systems. When underwater visibility is insufficient, only sonar systems can provide stable data, which necessitates exploration of the underwater acoustic object tracking (UAOT) task. Previous studies have explored traditional methods and Siamese networks for UAOT. However, the absence of a unified evaluation benchmark has significantly constrained the value of these methods. To alleviate this limitation, we propose the first large-scale UAOT benchmark, SonarT165, comprising 165 square sequences, 165 fan sequences, and 205K high-quality annotations. Experimental results demonstrate that SonarT165 reveals limitations in current state-of-the-art SOT trackers. To address these limitations, we propose STFTrack, an efficient framework for acoustic object tracking. It includes two novel modules, a multi-view template fusion module (MTFM) and an optimal trajectory correction module (OTCM). The MTFM module integrates multi-view feature of both the original image and the binary image of the dynamic template, and introduces a cross-attention-like layer to fuse the spatio-temporal target representations. The OTCM module introduces the acoustic-response-equivalent pixel property and proposes normalized pixel brightness response scores, thereby suppressing suboptimal matches caused by inaccurate Kalman filter prediction boxes. To further improve the model feature, STFTrack introduces a acoustic image enhancement method and a Frequency Enhancement Module (FEM) into its tracking pipeline. Comprehensive experiments show the proposed STFTrack achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/SonarT165.
Abstract:In this paper, a multi-scale DeepOnet (Mscale-DeepOnet) is proposed to reduce the spectral bias of the DeepOnet in learning high-frequency mapping between highly oscillatory functions, with an application to the nonlinear mapping between the coefficient of the Helmholtz equation and its solution. The Mscale-DeepOnet introduces the multiscale neural network in the branch and trunk networks of the original DeepOnet, the resulting Mscale-DeepOnet is shown to be able to capture various high-frequency components of the mapping itself and its image. Numerical results demonstrate the substantial improvement of the Mscale-DeepOnet for the problem of wave scattering in the high-frequency regime over the normal DeepOnet with a similar number of network parameters.
Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
Abstract:Medical image and video segmentation is a critical task for precision medicine, which has witnessed considerable progress in developing task or modality-specific and generalist models for 2D images. However, there have been limited studies on building general-purpose models for 3D images and videos with comprehensive user studies. Here, we present MedSAM2, a promptable segmentation foundation model for 3D image and video segmentation. The model is developed by fine-tuning the Segment Anything Model 2 on a large medical dataset with over 455,000 3D image-mask pairs and 76,000 frames, outperforming previous models across a wide range of organs, lesions, and imaging modalities. Furthermore, we implement a human-in-the-loop pipeline to facilitate the creation of large-scale datasets resulting in, to the best of our knowledge, the most extensive user study to date, involving the annotation of 5,000 CT lesions, 3,984 liver MRI lesions, and 251,550 echocardiogram video frames, demonstrating that MedSAM2 can reduce manual costs by more than 85%. MedSAM2 is also integrated into widely used platforms with user-friendly interfaces for local and cloud deployment, making it a practical tool for supporting efficient, scalable, and high-quality segmentation in both research and healthcare environments.
Abstract:The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
Abstract:Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.